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Abstract. A formula is derived for the Nijenhuis tensor of an endomorphism constructed from
contracting a bivector field with a 2-form. Two applications are considered: the first is to
the uniqueness aspect of the inverse problem of the calculus of variations, the second is to
bi-Hamiltonian systems.

1. Introduction

Let � andω be type(2, 0) and (0, 2) skew-symmetric tensor fields on a smooth manifold
M. Further, letR be the one-stage contraction of� with ω, that is, if X is a vector field
on M

RX = �(−, i(X)ω). (1.1)

The following problem occurs in several contexts in theoretical mechanics: to compute the
Nijenhuis tensionNR in terms of� andω. We shall solve this problem in proposition 2.2.

Two of the situations alluded to above are as follows.
(1) Let M be the tangent bundle of a differentiable manifoldN and let0 be a second-

order vector field onT N . Suppose that0 is an Euler–Lagrange vector field and that0

has two Cartan 2-forms that we denote by�−1 and ω. Define an endomorphism fieldR
according to (1.1) above.

(2) Let M be a manifold endowed with two Poisson structures� and ω−1. As the
notation suggests, the second Poisson structure is non-degenerate and soω is a symplectic
form. A vector fieldX with the property that there exist functionsH0 andH1 on M such
that

X = �(−, dH0) = ω−1(−, dH1) (1.2)

is called a bi-Hamiltonian system. (For more details see [10].) The Poisson structures are
said to becompatible if for all choices of constantsλ0 and λ1, λ0� + λ1ω

−1 is also a
Poisson structure. We shall reconsider this compatibility condition in section 4.

The inverse problem of Lagrangian dynamics is concerned with finding necessary and
sufficient conditions for a second-order vector field0 on a tangent bundleT N to be the
Euler–Lagrange vector field of a regular LagrangianL. We shall limit our attention to
the autonomous case but clearly the results may be extended to the time-dependent case.
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For details about tangent bundle geometry and the invariant formulation of Lagrangian
dynamics, we refer the reader to Crampin [3] and Morandiet al [8] and adopt the notation
of [3].

The following answer to the inverse problem was given by Crampin [2] and provides a
geometrization of the well known Helmholtz conditions.

Theorem. Necessary and sufficient conditions for0 to be derivable from a regular
Lagrangian are that there exists onT M a 2-formω, of maximal rank, for whichL0ω = 0,
and such that all vertical subspaces are Lagrangian both forω and(i)Hdω whereH is any
horizontal vector.

In particular, the Helmholtz conditions do not demanda priori thatω should be closed.
The other aspect of the inverse problem is whether the Lagrangian, if it exists, is

essentially unique, Several authors have argued that the existence of distinct Lagrangians,
and hence an endomorphism fieldR, is indicative of the complete integrability of the
dynamical system0 [3, 4, 8]. Obviously the existence of alternative Lagrangians closely
resembles the theory of a bi-Hamiltonian system. However, one should not imagine that
the two theories are simply related. In fact under Legendre transform0 will, in general,
be mapped to two quite distinct Hamiltonian vector fields onT ∗N depending on which
Lagrangian is used.

Although bi-Hamiltonian systems have probably attracted more attention than bi-
Lagrangian systems [6], there are three works [3, 4, 8] on the latter which we shall cite
and which it is our intention to elucidate and supplement. The point of view adopted
in [3, 4, 8] is to suppose that a second-order field0 possesses two essentially distinct
Lagrangians, at least one of which is regular. Using the inverse of the Cartan 2-form
of the regular Lagrangian and the Cartan 2-form of the other Lagrangian, one may
construct the recursion operatorR in the manner of equation (1.1). One then shows
that constants of motion may be constructed from traces of powers ofR under the
assumption that the Nijenhuis torsionNR is zero. Our main theorems below clarify the
relationship between the existence of alternative Cartan forms and the vanishing ofNR.
Conversely, we formulate necessary and sufficient conditions for an endomorphism fieldR,
having certain properties including the vanishing ofNR, to engender an alternative Cartan
form.

The final point in this introductory section concerns the somewhat contentious question
of notation. One of the drawbacks of the coordinate-free formulation of modern differential
geometry is that there is no convenient way to denote a contraction of contravariant and
convariant tensors whose rank is larger that one. Of course, in the presence of a bivector
field � and 2-formω we have musical morphisms #� : T ∗M → T M and[ω : T M → T ∗M,
respectively. Here, ifα is a 1-form onM, #ω(α) or α# is defined byβ(α#) = �(α, β)

for all 1-forms β on M. Similarly for a vector fieldX on M, [ω(X) or X[ is defined as
i(X)ω. However, these constructions are again most useful for changing 1-forms into
vector fields andvice versa although one can induce mappings on higher rank tensor
bundles. The musical morphisms are used occasionally below, # and[ always defined
relative to� and ω, respectively. In order to avoid an excessively cluttered notation we
have often resorted to a dot to denote a contraction. The reader should bear in mind that
throughout the paper all contractions are ‘one stage’; that is, adjacent tensors separated
by a dot are contracted over adjacent ‘indices’ only. For example, ifα is a 1-form, the
vector field� · α and 2-formω · � · ω would be written locally as�ijαj and ωij�

jkωkl ,
respectively.
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2. A formula for the Nijenhuis torsion of R

In this section we shall derive a formula forNR whereR is defined by (1.1). We begin
with a technical lemma in which a 1-form onM is denoted byα, the vector field dual to
α via � by α# and the Lie derivative operator byL. Also, [�, �] denotes the Schouten
concomitant of� with itself, for details of which we refer to Nijenhuis’ original paper [9].
See also [6, 7].

Lemma 2.1.

Lα#� = [� · α, �] = 1/4[�, �] · α + � · dα · �. (2.1)

Proof. It is enough to establish the result for� of the formX ∧Y because of the linearity
properties of the Schouten bracket. Thus

2[� · α, �] = L〈Y,α〉X−〈X,α〉Y X ∧ Y

= −〈Y, α〉[X, Y ] ∧ X + 〈X, α〉[X, Y ] ∧ Y − (X〈Y, α〉 − Y 〈X, α〉)X ∧ Y

= −〈Y, α〉[X, Y ] ∧ X + 〈X, α〉[X, Y ] ∧ Y − 〈[X, Y ], α〉X ∧ Y

− dα(X, Y )X ∧ Y.

However, it is easy to check with� of the formX∧Y that�·dα·� is just−1
2dα(X, Y )X∧Y .

Finally following [6] we see that

[�, �] = −2X ∧ Y ∧ [X, Y ]

and hence we obtain the result. �

Proposition 2.2.

NR(X, Y ) = 1
4[�, �](X[, Y [, −) + [i(Y )i(X) d(ω · � · ω) − dω(RX, Y,−)

+dω(RY, X,−)]# (2.2)

Proof. Recall that the definition ofNR is given by

NR(X, Y ) = [RX, RY ] − R[RX, Y ] − R[X, RY ] + R2[X, Y ]. (2.3)

We rewriteNR in the form

NR(X, Y ) = R · (LY R)(X) − (LRY R)(X) (2.4)

noting that the tensorial property ofNR is thus made evident. From now on we shall
suppress theX variable and recalling thatR is � · ω we obtain

NR(−Y ) = � · ω · LY � · ω + � · ω · � · LY ω − (LRY �) · ω − � · LRY ω. (2.5)

We rewrite the third term in (2.5) by means of lemma 2.1, withα being the 1-form−i(Y )ω,
as [1/4[�, �] · i(Y )ω ·+� ·d(i(Y )ω) ·�] ·ω. For the moment we shall ignore the Schouten
bracket term and notice that all other terms lead off with an�, which we shall ignore.
What remains is, on replacing d(i(Y )ω) by LY ω − i(Y ) dω:

ω · LY � · ω + ω · � · LY ω + LY ω · � · ω − i(Y ) dω · � · ω

−i(RY ) dω − d(i(RY )ω). (2.6)

The first three terms may be rewritten asLY (ω · � · ω) and hence (2.6) may be recast as

i(Y ) d(ω · � · ω) + d(i(Y )ω · � · ω) − i(Y ) dω · � · ω − i(� · ω(Y )) dω

− d(i(� · ω(Y ))ω). (2.7)

However, we see that the second and fifth terms in (2.7) are equal but for sign and so cancel.
Finally going back to (2.5) and putting everything together we obtain the formula (2.2) stated
above. �
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We should mention also that formula (2.2) continues Nijenhuis’ program of relating the
various differential concomitants introduced by himself and Schouten [9].

3. The uniqueness aspect of the Lagrangian inverse problem

We turn now to applications of formula (2.2) and begin with the uniqueness aspect of the
Lagrangian inverse problem. Theorem 3.2 below elucidates the Nijenhuis condition for a
recursion operator constructed from a pair of Cartan 2-forms. The proof depends on the
following lemma which is based on [2] and [8]. The canonical almost tangent structure on
T N is denoted byS.

Lemma 3.1. Let 0 be a second-order vector field that is of Euler–Lagrange type, with�−1

being its Cartan 2-form. suppose thatω is an alternative not necessarily non-degenerate
Cartan 2-form for0 and that the recursion operatorR is defined by equation (1.1). Then
R satisfies:

(i) ω(RX, Y ) = ω(X, RY), for all vector fieldsX, Y on T N ;
(ii) R · S = S · R;
(iii) R · L0S = L0S · R;
(iv) the horizontal and vertical distributions of0 andR-invariant.

Proof. (i) For arbitraryX andY we have

ω(RX, Y ) = ω(� · ω(X), Y ) = �(i(Y )ω, i(X)ω) = −�(i(X)ω, i(Y )ω)

= − ω(RY, X) = ω(X, RY).

(ii) Let Z and W be vector fields onN and ZV, WV and Zh, W h their vertical and
horizontal lifts, respectively. Since vertical subspaces are Lagrangian forω andL0ω is zero
we find that

ω([0ZV], WV) + ω(ZV, [0, WV]) = 0. (3.1)

Again, because vertical subspaces are Lagrangian, we may replace [0, ZV] by its horizontal
component−Zh and likewise forW . Thus

ω(Zh, WV) = ω(W h, ZV). (3.2)

The last equation easily implies that

ω(SX, Y ) = ω(SY, X) (3.3)

for all X andY . Now

�−1(RSX, Y ) = ω(SX, Y ) = −ω(X, SY ) = −�−1(RX, SY ) = �−1(SRX, Y ).

Hence since�−1 is non-degenerate andX andY are arbitraryRS = SR.
(iii) is immediate from (ii) and the fact thatL0R = 0.
(iv) follows from (iii) and the fact that the horizontal projector of0 is 1/2 [I − L0S].

�

Theorem 3.2. Let 0 be a second-order vector field that is of Euler–Lagrange type and let
�−1 be its Cartan 2-form. Suppose thatR is a non-singular endomorphism field onT N

that satisfies the following conditions:
(i) �−1 · R = ω, say, is skew-symmetric (and of type (0, 2));
(ii) The vertical distribution onT N is invariant byR;
(iii) L0R = 0;
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(iv) the Nijenhuis tensorNR of R vanishes. Thenω is an alternative Cartan 2-form for
0 if and only if

�−1(W, (LV R)H) − �−1(V , (LWR)H) = 0 (3.4)

whereH is an arbitrary horizontal andV andW arbitrary vertical vector fields.

Proof. We show thatω satisfies the conditions of Crampin’s theorem. Of course�−1

satisfies those conditions and so, because of (iii),L0ω = 0. Next condition (ii) above and
the fact that vertical subspaces are Lagrangian for�−1 implies the same ofω.

Finally we turn to the condition involving horizontal vectors and consider condition
(iv). Now ω is of course a Poisson tensor and so the vanishing ofNR may be written as,
in view of proposition 2.2.

i(H)i(W)i(V ) d(ω · � · ω) − dω(RV, W, H) + dω(RW, V, H) = 0 (3.5)

whereV, W andH are arbitrary vector fields onT N .
Now let us specialize, as the notation suggests, to the case whereV andW are vertical

andH is horizontal. We compute each of the three exterior derivatives using the six-term
formula taking into account the following considerations: three of the 18 terms are zero
as a result of the fact that vertical subspaces are Lagrangian forω and that the horizontal
distribution if R-invariant by the argument of lemma 3.1 (iv). Four further pairs of terms
cancel because of the switching property of lemma 3.1 (i) so that (3.5) reduces to

RV (ω(H, W)) − RW(ω(H, V )) + ω(H, R[V, W ] − [RV, W ] − [V, RW ])
+ω(W, [RV, H ] − ω(V, [RW, H ]) = 0. (3.6)

On the other hand, the last condition in Crampin’s theorem requires ofω that

V (ω(W, H)) + W(ω(H, V )) + ω(H, [V, W ]) + ω(V, [W, H ]) + ω(W, [H, V ]) = 0 (3.7)

whereH(ω(V, W)) vanishes in (3.7) because of the Lagrangian condition satisfied byω.
SinceR is assumed to be non-singular and leaves the horizontal and vertical distributions

invariant we may replaceH by RH and also use the vanishing ofNR as given by (2.3) to
simplify (3.6) further, thereby obtaining

RV (ω(RW, H)) + RW(ω(H, RV )) + ω(W, [RH, RV ]) + ω(V, [RW, RH ])
+ω(H, [RV, RW ]) = 0. (3.8)

Similarly in (3.7) we replaceV andW by RV andRW , respectively:

RV (ω(RW, H)) + RW(ω(H, RV )) + ω(W, R[H, RV ]) + ω(V, R[RW, H ])
+ω(H, [RV, RW ]) = 0. (3.9)

Clearly (3.8) and (3.9) are equivalent if and only if

ω(W, (LRV R)H) − ω(V, (LRWR)H) = 0. (3.10)

Finally, eliminatingω in favour of � and using the fact thatRV and RW are arbitrary,
vertical vector fields (3.10) may be recast in the form (3.4). �

The following theorem provides something of a converse to theorem 3.2

Theorem 3.3. Let 0 be a second-order vector field that is of Euler–Lagrange type and let
�−1 be its Cartan 2-form. Suppose further thatω is a not necessarily non-degenerate
alternative Cartan 2-form for0. Then if R and NR are defined by (1.1) and (2.3),
respectively, thenNR is zero if and only if

ω(V, (LWR)H) − ω(W, (LV R)H) = 0 (3.11)

whereH is a horizontal andV andW are vertical vector fields.
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Proof. Clearly according to proposition 2.2 we have thatNR is zero if and only if the
2-form ω · R is closed. However, we have thatL0(ω · R) = 0 and the vertical distribution
is Lagrangian forω · R by lemma 3.1 (iv). Thus according to Crampin’s theoremω · R is
closed if and only if

V (ω(W, RH)) + W(ω(H, RV )) + ω(H, R[V, W ]) + ω(V, R[W, H ])
+ω(W, R[H, V ]) = 0 (3.12)

whereH is a horizontal andV andW are vertical vector fields, respectively. However, if
we evaluate dω(RH, V, W) we obtain, making use of lemma 3.1(i),

V (ω(W, RH)) + W(ω(H, RV )) + ω(H, R[V, W ]) + ω(V, [W, RH ])
+ω(W, [RH, V ]) = 0. (3.13)

Clearly, however, (3.11) is the necessary and sufficient condition for the equality of (3.12)
and (3.13). �

We conclude this section with two examples that are intended to illustrate the scope of
theorems 3.2 and 3.3.

Example 1. Let g be a metric of any signature on a manifoldN of dimensionn. Locally g

is represented by the matrixgij relative to a coordinate system(xi) on N . The complete lift
of g denoted bygc is a metric onT N of signature(n, n) and in induced coordinates(xi, ui)

on T N corresponds to the metric

[
0 g

g ġ

]
where the dot denotes total time derivative. For

more details on the complete lift construction we refer to [11]. The pullback ofg to T N is
parallel with respect to the Levi-Civita connection∇c of gc. Passing now toT T N, gc and
g induce non-degenerate and degenerate Lagrangians, respectively. The resulting recursion
operatorR is parallel with respect to∇c and henceNR is zero.

Example 2. We consider the second-order vector field0 defined by

0 = ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ y

∂

∂u
(3.14)

whereu andv stand forẋ and ẏ, respectively. The corresponding system of second-order
ordinary differential equation is one of the examples considered in the famous article of
Douglas [5] on the inverse problem. It is also considered in some detail in [1].

Notice that we have chosen to includet in (3.14). The reason is that following [1] both
the LagrangiansL1 andL2 engender (3.14), where

L1 = uv + 1
2y2 (3.15)

L2 = uv2 − tyv2 + 1
6t2v3. (3.16)

We leave it to the reader to check, allowing for the occurrence oft and the obvious
modifications necessitated thereby, that the Nijenhuis tensor of the recursion operator defined
by L1 andL2 is not zero. We now have three ways to do this: (i) constructNR directly,
(ii) use Theorem 3.3 or rather its time-dependent analogue, (iii) check if the formω · R is
closed.

4. A criterion for bi-Hamiltonian structures

Finally let us reconsider the bi-Hamiltonian systems introduced above and derive the
following result.
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Proposition 4.1. The Poisson structures� andω−1 are compatible if and only if the 2-form
ω · � · ω is closed.

Proof. First of all note that the Schouten bracket ofλ0� + λ1ω
−1 with itself is given by

[λ0� + λ1ω
−1, λ0� + λ1ω

−1] =λ2
0[�, �] + λ0λ1[�, ω−1] + λ0λ1[ω−1, �] + λ2

1[ω−1, ω−1]
= 2λ0λ1[�, ω−1].

Now consider the following equality of endomorphism fields whereR is defined by
equation (1.1):

λ0R + λ1I = (λ0� + λ1ω
−1) · ω. (4.1)

We evaluate the Nijenhuis tensor of the left-hand side directly from (2.3) and that of the
right-hand side from (2.2), using the formula for the Schouten bracket ofλ0� + λ1ω

−1

with itself previously obtained. In fact, we find that after dividing byλ0λ1, X andY being
arbitrary vector fields,

[�, ω−1] · i(X)ω ∧ i(Y )ω = ω−1 · i(Y )i(X) · d(ω · � · ω). (4.2)

From (4.2) we see that vanishing of the Schouten bracket [�, ω−1] is equivalent to the
closure of the 2-formω · � · ω. �

In conclusion we might mention that proposition 4.1 is quite practical because it is
usually easier to check the closure of a form than to calculate a Schouten bracket.
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